Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 321: 117487, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030024

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a life-threatening condition with high morbidity and mortality, underscoring the urgent need for novel treatments. Monochasma savatieri Franch. (LRC) is commonly used clinically to treat wind-heat cold, bronchitis, acute pneumonia and acute gastroenteritis. However, its role in the treatment of ALI and its mechanism of action are still unclear. AIM OF THE STUDY: This study aimed to demonstrate the pharmacological effects and underlying mechanisms of LRC extract, and provide important therapeutic strategies and theoretical basis for ALI. MATERIALS AND METHODS: In this study, a research paradigm of integrated pharmacology combining histopathological analysis, network pharmacology, metabolomics, and biochemical assays was used to elucidate the mechanisms underlaying the effects of LRC extract on LPS-induced ALI in BALB/c mice. RESULTS: The research findings demonstrated that LRC extract significantly alleviated pathological damage in lung tissues and inhibited apoptosis in alveolar epithelial cells, and the main active components were luteolin, isoacteoside, and aucubin. Lung tissue metabolomic and immunohistochemical methods confirmed that LRC extract could restore metabolic disorders in ALI mice by correcting energy metabolism imbalance, activating cholinergic anti-inflammatory pathway (CAP), and inhibiting TLR4/NF-κB signaling pathway. CONCLUSIONS: This study showed that LRC extract inhibited the occurrence and development of ALI inflammation by promoting the synthesis of antioxidant metabolites, balancing energy metabolism, activating CAP and suppressing the α7nAChR-TLR4/NF-κB p65 signaling pathway. In addition, our study provided an innovative research model for exploring the effective ingredients and mechanisms of traditional Chinese medicine. To the best of our knowledge, this is the first report describing the protective effects of LRC extract in LPS-induced ALI mice.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Animais , Camundongos , NF-kappa B/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Pulmão/patologia , Pneumonia/patologia
2.
Adv Mater ; 31(46): e1904535, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31549776

RESUMO

Osteoarthritis (OA) is a common joint degenerative disease that causes pain, joint damage, and dysfunction. External hyaluronic acid (HA) supplement is a common method for the management of osteoarthritis which requires multi-injections. It is demonstrated that biodegradable mesoporous silica nanoparticles successfully deliver an enzyme, hyaluronan synthase type 2 (HAS2), into synoviocytes from the temporomandibular joint (TMJ) and generate endogenous HA with high molecular weights. In a rat TMJ osteoarthritis inflammation model, this strategy promotes endogenous HA production and inhibits the synovial inflammation of OA for more than 3 weeks with one-shot administration. Such nanotherapy also helps repairing the bone defects in a rat OA bone defect model.


Assuntos
Hialuronan Sintases/farmacologia , Ácido Hialurônico/biossíntese , Articulações/efeitos dos fármacos , Articulações/metabolismo , Nanomedicina/métodos , Osteoartrite/tratamento farmacológico , Animais , Linhagem Celular , Humanos , Hialuronan Sintases/química , Hialuronan Sintases/metabolismo , Hialuronan Sintases/uso terapêutico , Ácido Hialurônico/química , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Peso Molecular , Nanopartículas/química , Osteoartrite/metabolismo , Osteoartrite/patologia , Porosidade , Ratos , Dióxido de Silício/química , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/patologia
3.
Am J Transl Res ; 8(2): 556-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27158347

RESUMO

Temporomandibular joint (TMJ) inflammation is a potential risk factor of osteoarthritis (OA) but the detailed degenerative changes in the inflamed TMJ remain unclear. In this study, we evaluated the changes of condylar cartilage and subchondral bone in rat inflamed TMJ induced by Freund's complete adjuvant (CFA). Articular cavity was injected with CFA and the TMJ samples were collected 1, 2, 3, and 4-week post-injection. Hematoxylin & Eosin (H&E) staining, toluidine blue (TB) staining, Safranin O (S.O) staining, Masson trichrome staining and micro-CT were used to assess TMJ degeneration during inflammation. Osteoclast and osteoblast activities were analyzed by tartrate-resistant acid phosphatase (TRAP) staining and osteocalcin (OCN) immunohistochemistry staining respectively. The expression of receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG) in condylar cartilage and subchondral bone was also evaluated through immunohistochemistry and RANKL/OPG ratio was evaluated. Reduced cartilage thickness, decreased number of chondrocytes, and down-regulated proteoglycan expression were observed in the condylar cartilage in the inflamed TMJ. Enhanced osteoclast activity, and expanded bone marrow cavity were reached the peak in the 2-week after CFA-injection. Meanwhile the RANKL/OPG ratio in the cartilage and subchondral bone also increased in the 2-week CFA-injection. Immature, unmineralized new bones with irregular trabecular bone structure, atypical condylar shape, up-regulated OCN expression, and decreased bone mineral density (BMD) were found in the inflamed TMJ. The time-dependent degeneration manner of TMJ cartilage and subchondral bone was found in CFA-induced arthritis rat model. The degeneration in the TMJ with inflammation might be a risk factor and should be concerned.

4.
Comp Biochem Physiol B Biochem Mol Biol ; 152(3): 266-70, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19110065

RESUMO

Levels of insecticide resistance, carboxylesterase activity, carboxylesterase expression, and the cDNA sequence of carboxylesterase gene were investigated in malathion resistant and susceptible strains of cotton aphids, Aphis gossypii (Glover). The resistant strain (MRR) exhibited 80.6-fold resistance to malathion compared to the susceptible strain (MSS) in cotton aphids. Five substrates, alpha-naphthyl acetate (alpha-NA), beta-naphthyl acetate (beta-NA), alpha-naphthyl propionate (alpha-NPr), alpha-naphthyl butyrate (alpha-NB), alpha-naphthyl caprylate (alpha-NC) and S-methyl thiobutyrate (S-MTB) were used to determine carboxylesterase activity in MRR and MSS strains of cotton aphids. Carboxylesterase activity was significantly higher in MRR strain than in MSS strain, 3.7-fold for alpha-NA, 3.0-fold for beta-NA, 2.0-fold for alpha-NPr, 2.9-fold for alpha-NB and 1.6-fold for alpha-NC, While for S-MTB, there was nearly no difference between the two strains. Two site mutations (K14Q and N354D) with high frequency were also found by sequence analysis in the MRR strain, compared with the MSS strain. The levels of gene expression for carboxylesterase of both MRR and MSS strains were determined by real-time quantitative PCRs. Compared with the MSS strain, the relative transcription levels and gene copy numbers of the carboxylesterase were 1.99- and 4.42-fold in the MRR strain, respectively. These results indicated that the increased expression of the carboxylesterase resulted from the increased transcription levels of carboxylesterase mRNA and gene copy numbers and combined with the site mutants might play role in cotton aphid resistance to malathion.


Assuntos
Afídeos/efeitos dos fármacos , Afídeos/enzimologia , Carboxilesterase/genética , Carboxilesterase/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Resistência a Inseticidas/genética , Malation/farmacologia , Animais , Afídeos/genética , Sequência de Bases , Carboxilesterase/antagonistas & inibidores , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Mutação , Naftalenos/farmacologia , Naftóis/farmacologia , Organotiofosfatos/farmacologia , Propionatos/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Tiamina Pirofosfato/farmacologia , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA